Realtime

Материал из ALT Linux Wiki

Операционная система реального времени (в отличии от системы общего назначения) оптимизирована на уменьшение задержек реакции (latency) и детерминизм (maximum latency) при обработке событий. Применяется для построения систем в сферах телекоммуникаций, управления машинами, высокочастотной торговли, обработки звука и т.п.[1]

На данный момент в репозиторий Сизиф под архитектуру x86_64 собраны два ядра реального времени:

kernel-image-xenomai

Xenomai.png

"Двойное ядро" состоящее из высокоприоритетного ко-ядра Cobalt реализующего различные (skins) RTOS API Xenomai 3 и ядра линукс с I-Pipe (Adeos) патчем реализующим систему жёсткого реального времени. Xenomai 3 может эмулировать RTOS API: pSOS+, uITRON, VxWorks, RTAI, VRTX, а так же содержит нативное API Alchemy и поддерживает Real-Time Driver Model (RTDM). Документация на англ.

Юзерспейс и специализированные тесты для этого ядра находятся в пакете xenomai.

kernel-image-rt

RealTimeLinux Logo1.png

Real Time Linux с PREEMPT_RT патчем реализующим POSIX real-time API. Иногда называемое -rt ядро. Начиная с Linux v6.12 поддержка PREEMPT_RT полностью включена в апстримное ядро и не требует внешнего патча. Однако, такое ядро всё равно требует сборки с отдельным конфигом где включается PREEMPT_RT.

Для тестирования этого ядра можно использовать пакет linux-rt-tests.

Установка ядра:

# apt-get update
# apt-get dist-upgrade
# apt-get install update-kernel
# update-kernel -t rt
# reboot

Тестирование ядра

Очень важно первоначально определить пригодность вашей системы для задач реального времени.

cyclictest

Базовый способ тестирования ядра реального времени (POSIX API), это запуск утилиты cyclictest параллельно с созданием нагрузки на систему (генерацию нагрузки вы должны организовать сами, например, запуском unixbench, stress-ng, hackbench, gltestperf в цикле) в течении длительного времени (не менее 24 часов). Пример запуска:

   # cyclictest -a -m -Sp99

Пример вывода на обычном ядре (std_def):

T: 0 ( 1931) P:99 I:1000 C:2018975 Min:      1 Act:    1 Avg:    2 Max:    2151
T: 1 ( 1932) P:99 I:1500 C:1345983 Min:      1 Act:    2 Avg:    3 Max:    2187
T: 2 ( 1933) P:99 I:2000 C:1009488 Min:      1 Act:    1 Avg:    3 Max:    2266
T: 3 ( 1934) P:99 I:2500 C: 807593 Min:      1 Act:    2 Avg:    3 Max:    1886

Для оценки результата следует смотреть на значения Max показывающие время реакции на прерывания в микросекундах. (Есть примеры, на обычной системе, где Max доходит до 5-значных чисел.) Пример вывода на -rt ядре (SMI прерываний не было):

T: 0 ( 4041) P:99 I:1000 C:4719726 Min:      1 Act:    2 Avg:    2 Max:      17
T: 1 ( 4042) P:99 I:1500 C:3146481 Min:      1 Act:    2 Avg:    2 Max:      26
T: 2 ( 4043) P:99 I:2000 C:2359859 Min:      2 Act:    2 Avg:    2 Max:      14
T: 3 ( 4044) P:99 I:2500 C:1887886 Min:      1 Act:    2 Avg:    2 Max:      14

(Есть сообщения, что в некоторых системах Max остается в пределах 1-значного числа.) Пример вывода на -rt ядре при наличии SMI прерываний, cyclictest запущен с дополнительной опцией --smi:

T: 0 (20422) P:99 I:1000 C:305390555 Min:      2 Act:    2 Avg:    3 Max:     297 SMI:     176
T: 1 (20423) P:99 I:1500 C:203593701 Min:      2 Act:    2 Avg:    3 Max:     318 SMI:     176
T: 2 (20424) P:99 I:2000 C:152695274 Min:      2 Act:    2 Avg:    2 Max:     274 SMI:     176
T: 3 (20425) P:99 I:2500 C:122156218 Min:      2 Act:    2 Avg:    3 Max:     340 SMI:     176

Опция --smi добавляет колонку SMI, которая показывает сколько было System Management Interrupts за время теста (счетчик прерываний считывается из MSR, если в вашем процессоре нет такого счетчика, то для их обнаружения можно использовать утилиту hwlatdetect). SMI прерывания могут значительно ухудшить показатели системы. В худшем случае, SMI прерывания способны давать задержки на многие миллисекунды. В системе пригодной для реального времени можно снизить число SMI через настройки или перепрошивку BIOS/firmware[2]. Впрочем, полностью отключать эти прерывания не рекомендуется, так как они выполняют полезные функции для здоровья системы (контроль температуры и прочее). Часто полезно прочитать HPC Tuning Guide[3] для вашего железа. Если задержки в системе превышает требуемый максимум, то она не пригодна для использования в реальном времени. Ещё один источник высоких задержек - не оптимизированные для реального времени драйвера оборудования (запрещающие прерывания на долгое время) или само железо (блокирующее процессор на долгое время).

hwlatdetect

Тест (с помощью hwlat tracer'а ядра) обнаруживает задержки создаваемые железом или firmware не зависимые от ядра, такие как SMI. (Не используйте его на продакшен системах или во время работы других тестов так как принцип его работы - нагружать процессоры на продолжительное время при запрещенных прерываниях, постоянно замеряя время (TSC) и определяя таким образом интервалы с пропусками.) Пример на системе с большими задержками:

# hwlatdetect
hwlatdetect:  test duration 120 seconds
   detector: tracer
   parameters:
        Latency threshold: 10us
        Sample window:     1000000us
        Sample width:      500000us
     Non-sampling period:  500000us
        Output File:       None

Starting test
test finished
Max Latency: 10099000us
Samples recorded: 67
Samples exceeding threshold: 67

rtcheck

Небольшая утилита (от IBM) проверяющая, что запущенное ядро имеет свойства -rt ядра. Запускать с опцией -v для просмотра отчета.

jitterdebugger

Более легкий в использовании аналог cyclictest (от Siemens и SUSE) с уклоном в воспроизводимый статистический анализ. (Домашняя страница. Видео презентация. англ.) Пример запуска:

# jitterdebugger -v

stress-ng

В stress-ng есть свой cyclic стрессор. Удобство, что можно сразу запустить параллельную нагрузку, неудобство, что формат вывода отличается от cyclictest и стрессоры не привязаны к конкретным ядрам, да и запускать больше 1 --cyclic стрессора не рекомендуется (это само по себе создаст избыточную нагрузку на ядро, при этом, почти не даст дополнительной полезной информации).

# stress-ng --cyclic 1 --cyclic-dist 1000 --cyclic-prio 99 --cyclic-sleep 10000 -t 1m



Статьи